- Smith, B. D., Alonso, D. E., Bien, J. T., Metzler, E. C., Shang, M. & Roosenberg II, J. M. (1994). J. Org. Chem. 59, 8011–8014.
- Smith, B. D., Alonso, D. E., Bien, J. T., Zielinski, J. D., Smith, S. L. & Haller, K. J. (1993). J. Org. Chem. 58, 6493–6496.
- Süsse, P. & Neuling, H. (1981). Z. Kristallogr. 154, 308-310.
- Westmark, P. R., Kelly, J. P. & Smith, B. D. (1993). J. Am. Chem. Soc. 115, 3416–3419.
- Wyman, G. M. & Brode, W. R. (1951). J. Am. Chem. Soc. 73, 1487– 1493.

Acta Cryst. (1996). C52, 186-187

1β -(4-Methoxybenzyl)-8 α -vinyl-7-oxabicyclo[4.3.0]nonan-6 β -ol

HUNG-JANG GI, TAO WANG AND KANG ZHAO

Department of Chemistry, New York University, New York, NY 10003, USA

(Received 28 October 1994; accepted 20 June 1995)

Abstract

The crystal structure analysis of 1β -(4-methoxybenzyl)-8 α -vinyl-7-oxabicyclo[4.3.0]nonan-6 β -ol, C₁₈H₂₄O₃, reveals that the unit cell consists of two dimers, each formed by the linkage of double head-to-head hydrogen bonds between hemiacetal groups.

Comment

In our search for novel methods of stereoselective formation of remote stereocenters, we developed a route for the synthesis of 4-hydroxyketone derivatives *via* temporarily formed bicyclic systems such as (2). Compound (2) was prepared from potassium hydride treatment of the 2-substituted cycloketone (1) and 1,4dibromo-2-butene in tetrahydrofuran (Wang, Chen & Zhao, 1994), but the determination of the relative stereochemistry of (2) by ¹H and ¹³C NMR spectra was difficult. Recrystallization of the corresponding hydrate product, (3), from a mixture of cyclohexane and ethyl acetate gave colorless needles. A single-crystal X-ray analysis indicates that the vinyl group is located on the concave face of structure (3).

 \bigcirc 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

Structural features of the bicyclic rings are shown in Fig. 1. The cyclopentane and cyclohexane rings are cis fused. The dihedral angle between the cyclopentane ring and atoms C12, C13, C15 and C16 of the cyclohexane ring is 96.4°. The cyclohexane ring is in a distorted chair conformation with atoms C2 and O3 at equatorial positions, and atoms C17 and O1 at axial positions. The torsion angle C12-C13-C14—C15 on one side of the distorted ring is -59.9° , which exceeds the mean value of 52.9° by 7.0°. There is a compensation of 8.3° on the other side (C12-C11-C16-C15) from a flattening effect. The cyclopentane ring adopts a half-chair conformation [torsion angles ω_1 (C11--O1--C2), ω_2 (O1--C1--C2--C16), ω_3 (C1–C2–C16–C11), ω_4 (C2–C16–C11– O1) and ω_5 (C16-C11-O1-C1) of 16.5, 10.3, -30.4, 40.8 and -36.6° , respectively], which is also distorted from the ideal half-chair conformation of cyclopentane [torsion angles $\omega_1 = 14.4, \omega_2 = 14.4, \omega_3 = -37.8, \omega_4$ = 46.7 and $\omega_5 = -37.8^\circ$ (Geise, Altona & Romers, 1967; Altona, Geise & Romers, 1968). The C3=C4 double bond is approximately parallel to the O1--C1 bond, with a torsion angle O1—C1—C3=C4 of 3.2° .

Fig. 1. The molecular structure and atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The packing arrangement as viewed along **b**. Hydrogen bonds are shown by dashed lines.

As shown in Fig. 2, which is viewed down the b axis, the intermolecular packing is dictated by two hydrogen bonds, O3—H···O1' and O3'—H···O1, resulting in dimers related by an inversion center [symmetry code: (') 1 - x, -y, 1 - z; $H \cdots O1'$ and $H' \cdots O1$ 2.02 Å, O3- $H \cdots O1'$ and $O3 - H' \cdots O1 \ 164^{\circ}$].

Experimental

C16 0.3901 (2) 0.0110 (3) 0.6834 (2) 3.16 (4) C17 0.3517 (2) -0.1476 (3) 0.7141 (2) 3.97 (5) -0.1356 (4) 0.7840 (2) C21 0.2870(2)3.82 (5) C22 0.1850 (2) -0.0626(5)0.7658 (2) 4.29 (5) 0.8278 (3) C23 0.1226 (3) -0.0545(6)5.25 (7) C24 0.1629 (3) -0.1202(6)0.9098 (2) 5.31 (7) C25 -0.1939 (5) 0.2637 (3) 0.9294(3)5.80 (8) -0.1981 (5) 0.3260 (3) 0.8669 (3) C26 5.13(7) C27 0.1220 (5) -0.181(1)1.0447 (3) 9.6 (2)

Table 2. Selected geometric parameters $(Å, \circ)$

		01—C1	1.442 (2)	C13-C14	1.521 (3)
Crystal data		O1C11	1.429 (2)	C14-C15	1.516 (3)
		O2C24	1.371 (2)	C15-C16	1.525 (2)
$C_{18}H_{24}O_3$	Mo $K\alpha$ radiation	O2C27	1.367 (4)	C16C17	1.547 (2)
$M_r = 288.39$	$\lambda = 0.71073 \text{ Å}$	O3-C11	1.410 (3)	C17-C21	1.519 (2)
Monoclinic	Cell parameters from 25	C1C2	1.538 (3)	C21-C22	1.386 (2)
P2. /a	raflactions	C1—C3	1.494 (2)	C21—C26	1.379 (3)
$r z_1/a$	Tenections	C2C16	1.536 (3)	C22—C23	1.391 (3)
a = 12.525(3) A	$\theta = 8.1 - 14.2^{\circ}$	C3—C4	1.314 (3)	C23—C24	1.380 (3)
b = 8.490(2) Å	$\mu = 0.0738 \text{ mm}^{-1}$	C11—C12	1.514 (3)	C24C25	1.375 (4)
c = 15.697(6) Å	T = 299 K	C11—C16	1.542 (1)	C25—C26	1.395 (3)
$\beta = 104.10(3)^{\circ}$	Needle	C12—C13	1.527 (3)		
$\mu = 104.19(3)$	$0.4 \times 0.4 \times 0.3 \text{ mm}$	C1	108.6 (2)	C11-C12-C13	112.5 (2)
$V = 1018 \text{ A}^3$		C24—O2—C27	118.7 (3)	C12-C13-C14	111.0 (2)
Z = 4	Colorless	01—C1—C2	106.1 (1)	C13-C14C15	108.5 (2)
$D_x = 1.184 \text{ Mg m}^{-3}$		01—C1—C3	111.3 (1)	O3-C11-C12	110.9 (1)
C C		C2-C1-C3	115.5 (1)	C2-C16-C11	100.1 (1)
Data collection		C1—C2—C16	104.6 (2)	C2-C16-C15	109.5 (1)
Data contection		C1—C3—C4	124.4 (1)	C2-C16-C17	113.6(1)
Enraf–Nonius CAD-4	$R_{\rm int} = 0.027$	01—C11—O3	108.7 (1)	C11—C16—C15	109.0(1)
diffractometer	$\theta_{\rm max} = 25^{\circ}$	01	107.9 (1)	C11-C16-C17	111.3 (2)
w/2A scans	$h \rightarrow -14 \rightarrow 14$	01C11C16	103.8 (2)	C15-C16-C17	112.7 (1)
Absorption competions	$h = -14 \rightarrow 14$	C16—C17—C21	115.4 (1)	C14C15C16	113.8 (2)
Absorption correction:	$k = 0 \rightarrow 10$	C17 - C21 - C22	120.6 (1)	C22—C23—C24	119.6 (2)
none	$l = 0 \rightarrow 18$	C17 - C21 - C26	121.9(1)	02 - C24 - C23	114.4 (2)
3166 measured reflections	3 standard reflections	(22 - (21 - (26)))	117.0(1)	02 - 024 - 025	125.8 (2)
2936 independent reflections	monitored every 200	$C_{21} - C_{22} - C_{23}$	121.8 (2)	$C_{23} - C_{24} - C_{25}$	119.9 (2)
1546 observed reflections	reflections		106.4 (1)	$C_{24} - C_{23} - C_{20}$	119.7 (3)
		012-011-010	110.7(1)	C21-C20-C25	121.3 (2)
$[I > 3\sigma(I)]$	intensity decay: none	The non-H atoms were refined anisotropically and all H atoms			
		1 1	11.00	1 6 1	* . * **

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.64$
R(F) = 0.057	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
$wR(F^2) = 0.061$	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$
S = 5.7	Extinction correction: none
1546 reflections	Atomic scattering factors
286 parameters	from International Tables
H atoms refined isotropically	for X-ray Crystallography
Unit weights for all observed	(1974, Vol. IV)
reflections	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$						
	x	у	Z	Beg		
01	0.4614 (2)	0.1336 (2)	0.5758 (1)	3.39 (3)		
02	0.0942 (3)	-0.1058 (7)	0.9653 (2)	7.45 (9)		
03	0.4151 (2)	-0.1294 (3)	0.5573 (1)	3.68 (3)		
C1	0.3522 (2)	0.1985 (4)	0.5625 (2)	3.58 (5)		
C2	0.2965 (2)	0.1067 (4)	0.6243 (2)	3.69 (5)		
C3	0.3556 (3)	0.3733 (4)	0.5740 (2)	4.59 (6)		
C4	0.4461 (4)	0.4581 (5)	0.5899 (4)	5.85 (9)		
C11	0.4644 (2)	-0.0146 (3)	0.6194 (2)	3.24 (4)		
C12	0.5838 (2)	-0.0547 (4)	0.6601 (2)	3.99 (5)		
C13	0.6349 (3)	0.0511 (5)	0.7381 (3)	5.63 (8)		
C14	0.5647 (3)	0.0527 (5)	0.8047 (3)	5.46 (8)		
C15	0.4510 (2)	0.1135 (5)	0.7597 (2)	4.20 (5)		

were located in difference maps and refined isotropically. Backgrounds were obtained from the analysis of scan profile (Blessing, Coppens & Becker, 1974) and data were collected using CAD-4 Software (Enraf-Nonius, 1989). The structure was solved by direct methods and refined using the SDP-Plus (Frenz, 1985) program package on a PDP 11/44 computer.

We are grateful for support from the W. M. Keck Foundation and New York University.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1175). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32. Blessing, R. H., Coppens, P. & Becker, P. (1974). J. Appl. Cryst. 7, 488-490.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Geise, H. J., Altona, C. & Romers, C. (1967). Tetrahedron Lett. 15, 1383-1386.
- Wang, T., Chen, J. & Zhao, K. (1995). J. Org. Chem. In the press.